Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery.
نویسندگان
چکیده
A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.
منابع مشابه
Synthesis, Characterization, and Application of Core–Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents
Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in th...
متن کاملUltrasonic assisted preparation of lanthanide-oleate complexes for the synthesis of multifunctional monodisperse upconversion nanoparticles for multimodal imaging.
The synthesis of multifunctional monodisperse upconversion nanoparticles (UCNPs) of high quality is highly desired for bioimaging. Lanthanide-oleate complexes are excellent precursors for the synthesis of high quality UCNPs with controllable size and shape. In this work, lanthanide-oleate complexes were prepared by an ultrasonic assisted procedure, and used as precursors for further synthesis o...
متن کاملMultifunctional MnO2 nanosheet-modified Fe3O4@SiO2/NaYF4:Yb, Er nanocomposites as novel drug carriers.
We report on a novel drug carrier which is based on the combination of magnetic and upconversion (UC) emission of Fe3O4@SiO2/NaYF4:Yb, Er (MSU) hybrids modified with MnO2 nanosheets (MSU/MnO2). The MSU hybrids were fabricated by covalently linking amino-modified Fe3O4@SiO2 particles with carboxyl-functionalized NaYF4:Yb, Er particles. The Fe3O4 core and the NaYF4:Yb, Er shell functioned success...
متن کاملAptamer-Mediated Up-conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging
Multifunctional nanocarriers for targeted bioimaging and drug delivery have attracted much attention in early diagnosis and therapy of cancer. In this work, we develop a novel aptamer-guided nanocarrier based on the mesoporous metal-organic framework (MOF) shell and up-conversion luminescent NaYF4:Yb(3+)/Er(3+) nanoparticles (UCNPs) core for the first time to achieve these goals. These UCNPs, c...
متن کاملMultifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes.
A series of new multifunctional nanomesoporous materials based on upconversion nanophosphors NaYF4:Yb,Tm@NaGdF4 (UCNPs) and lanthanide complexes were designed and synthesized through mesoporous capping UCNPs nanophosphors and linking lanthanide (Ln) complexes. The obtained UCNPs@mSiO2-Ln(dbm)4 (Ln = Eu, Sm, Er, Nd, Yb) materials can achieve downconversion and upconversion luminescence to show m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2015